Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554191

RESUMO

BACKGROUND: The objective of this research was to investigate how the combination of semen coicis extract and PD-1 inhibitors can potentially work together to enhance the anti-tumor effects, with a focus on understanding the underlying mechanism. METHODS: We obtained the active components and specific targets of semen coicis in the treatment of NSCLC from various databases, namely TCMSP, GeneCard, and OMIM. By utilizing the STRING database and Cytoscape software, we established a protein interaction network (PPI) for the active ingredient of semen coicis and the target genes related to NSCLC. To explore the potential pathways involved, we conducted gene ontology (GO) and biological pathway (KEGG) enrichment analyses, which were further supported by molecular docking technology. Additionally, we conducted cyto-inhibition experiments to verify the inhibitory effects of semen coicis alone or in combination with a PD-1 inhibitor on A549 cells, along with examining the associated pathways. Furthermore, we investigated the synergistic mechanism of these two drugs through cytokine release experiments and the PD-L1 expression study on A549 cells. RESULTS: Semen coicis contains two main active components, Omaine and (S)-4-Nonanolide. Its primary targets include PIK3R1, PIK3CD, PIK3CA, AKT2, and mTOR. Molecular docking experiments confirmed that these ingredients and targets form stable bonds. In vitro experiments showed that semen coicis demonstrates inhibitory effects against A549 cells, and this effect was further enhanced when combined with PD-1 inhibitors. PCR and WB analysis confirmed that the inhibition of the PI3K-AKT-mTOR pathway may contribute to this effect. Additionally, semen coicis was observed to decrease the levels of IFN-γ, IL-6, and TNF-α, promoting the recovery of the human anti-tumor immune response. And semen coicis could inhibit the induced expression of PD­L1 of A549 cells stimulated by IFN­Î³ as well. CONCLUSION: Semen coicis not only has the ability to kill tumor cells directly but also alleviates the immunosuppression found in the tumor microenvironment. Additionally, it collaboratively enhances the effectiveness of PD-1 inhibitors against tumors by blocking the activation of PI3K-AKT-mTOR.

2.
Commun Biol ; 7(1): 181, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351296

RESUMO

Airway epithelial transcriptome analysis of asthma patients with different severity was used to disentangle the immune infiltration mechanisms affecting asthma exacerbation, which may be advantageous to asthma treatment. Here we introduce various bioinformatics methods and develop two models: an OVA/CFA-induced neutrophil asthma mouse model and an LPS-induced human bronchial epithelial cell damage model. Our objective is to investigate the molecular mechanisms, potential targets, and therapeutic strategies associated with asthma severity. Multiple bioinformatics methods identify meaningful differences in the degree of neutrophil infiltration in asthma patients with different severity. Then, PTPRC, TLR2, MMP9, FCGR3B, TYROBP, CXCR1, S100A12, FPR1, CCR1 and CXCR2 are identified as the hub genes. Furthermore, the mRNA expression of 10 hub genes is determined in vivo and in vitro models. Reperixin is identified as a pivotal drug targeting CXCR1, CXCR2 and MMP9. We further test the potential efficiency of Reperixin in 16HBE cells, and conclude that Reperixin can attenuate LPS-induced cellular damage and inhibit the expression of them. In this study, we successfully identify and validate several neutrophilic signatures and targets associated with asthma severity. Notably, Reperixin displays the ability to target CXCR1, CXCR2, and MMP9, suggesting its potential therapeutic value for managing deteriorating asthma.


Assuntos
Asma , Metaloproteinase 9 da Matriz , Animais , Camundongos , Humanos , Metaloproteinase 9 da Matriz/genética , Lipopolissacarídeos , Asma/tratamento farmacológico , Asma/genética , Brônquios , Perfilação da Expressão Gênica
3.
Front Immunol ; 14: 1240811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022582

RESUMO

Background: There is increasing evidence pointing to a close relationship between sarcopenia and inflammatory bowel disease. However, it remains unclear whether or in which direction causal relationships exist, because these associations could be confounded. Methods: We conducted a two-sample bidirectional mendelian randomization analysis using data from European genome-wide association studies of the appendicular lean mass(n = 450,243), walking pace(n = 459,915), grip strength (left hand, n = 461,026; right hand, n = 461,089), inflammatory bowel disease (25,042 patients and 34,915 controls), ulcerative colitis (12,366 patients and 33,609 controls), and Crohn's disease (12,194 patients and 28,072 controls) to investigate the causal relationship between sarcopenia-related traits and inflammatory bowel disease and its subtypes on each other. The inverse-variance weighted method was used as the primary analysis method to assess the causality, and a comprehensive sensitivity test was conducted. Results: Genetically predicted appendicular lean mass was significantly associated with inflammatory bowel disease (OR = 0.916, 95%CI: 0.853-0.984, P = 0.017), ulcerative colitis (OR =0.888, 95%CI: 0.813-0.971, P = 0.009), and Crohn's disease (OR = 0.905, 95%CI: 0.820-0.999, P = 0.049). Similar results also revealed that the usual walking pace was causally associated with Crohn's disease (OR = 0.467, 95%CI: 0.239-0.914, P = 0.026). Reverse mendelian randomization analysis results found that genetic susceptibility to inflammatory bowel disease, and Crohn's disease were associated with lower appendicular lean mass. A series of sensitivity analyses ensured the reliability of the present research results. Conclusion: The mendelian randomization study supports a bidirectional causality between inflammatory bowel disease, Crohn's disease and appendicular lean mass, but no such bidirectional causal relationship was found in ulcerative colitis. In addition, genetically predicted usual walking pace may reduce the risk of Crohn's disease. These findings have clinical implications for sarcopenia and inflammatory bowel disease management.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Sarcopenia , Humanos , Doença de Crohn/genética , Colite Ulcerativa/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Reprodutibilidade dos Testes , Sarcopenia/genética , Doenças Inflamatórias Intestinais/genética
4.
Front Endocrinol (Lausanne) ; 14: 1187882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347115

RESUMO

Background: Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease that has posed a serious threat to people's daily lives and caused an unprecedented challenge to public health and people's health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. Methods: LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. Results: We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. Conclusion: We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , COVID-19/epidemiologia , COVID-19/genética , Antivirais
5.
Dis Markers ; 2022: 8906064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393974

RESUMO

Background: Severe asthma (SA), a heterogeneous inflammatory disease characterized by immune cell infiltration, is particularly difficult to treat and manage. The airway epithelium is an important tissue in regulating innate and adaptive immunity, and targeting airway epithelial cell may contribute to improving the efficacy of asthma therapy. Methods: Bioinformatics methods were utilized to identify the hub genes and signaling pathways involved in SA. Experiments were performed to determine whether these hub genes and signaling pathways were affected by the differences in immune cell infiltration. Results: The weighted gene coexpression network analysis identified 14 coexpression modules, among which the blue and salmon modules exhibited the strongest associations with SA. The blue module was mainly enriched in actomyosin structure organization and was associated with regulating stem cell pluripotency signaling pathways. The salmon module was mainly involved in cornification, skin development, and glycosphingolipid biosynthesis-lacto and neolacto series. The protein-protein interaction network and module analysis identified 11 hub genes in the key modules. The CIBERSORTx algorithm revealed statistically significant differences in CD8+ T cells (P = 0.013), T follicular helper cells (P = 0.002), resting mast cells (P = 0.004), and neutrophils (P = 0.002) between patients with SA and mild-moderate asthma patients. Pearson's correlation analysis identified 11 genes that were significantly associated with a variety of immune cells. We further predicted the utility of some potential drugs and validated our results in external datasets. Conclusion: Our results may help provide a better understanding of the relationship between the airway epithelial transcriptome and clinical data of SA. And this study will help to guide the development of SA-targeted molecular therapy.


Assuntos
Asma , Biologia Computacional , Humanos , Transcriptoma , Redes Reguladoras de Genes , Asma/genética , Biomarcadores/metabolismo
6.
Comput Biol Med ; 146: 105601, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35751199

RESUMO

BACKGROUND: The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. METHODS: The "Limma" package or "DESeq2" package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. RESULTS: 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. CONCLUSIONS: This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.


Assuntos
Asma , COVID-19 , Asma/genética , Líquido da Lavagem Broncoalveolar , COVID-19/genética , Biologia Computacional , RNA Helicases DEAD-box , Perfilação da Expressão Gênica , Humanos , Peróxido de Hidrogênio , Fatores Reguladores de Interferon/genética , Mapas de Interação de Proteínas/genética , SARS-CoV-2 , Fatores de Processamento de Serina-Arginina/genética
7.
Front Pharmacol ; 13: 865097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754492

RESUMO

Objective: People suffering from coronavirus disease 2019 (COVID-19) are prone to develop pulmonary fibrosis (PF), but there is currently no definitive treatment for COVID-19/PF co-occurrence. Kaempferol with promising antiviral and anti-fibrotic effects is expected to become a potential treatment for COVID-19 and PF comorbidities. Therefore, this study explored the targets and molecular mechanisms of kaempferol against COVID-19/PF co-occurrence by bioinformatics and network pharmacology. Methods: Various open-source databases and Venn Diagram tool were applied to confirm the targets of kaempferol against COVID-19/PF co-occurrence. Protein-protein interaction (PPI), MCODE, key transcription factors, tissue-specific enrichment, molecular docking, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to clarify the influential molecular mechanisms of kaempferol against COVID-19 and PF comorbidities. Results: 290 targets and 203 transcription factors of kaempferol against COVID-19/PF co-occurrence were captured. Epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), transcription factor p65 (RELA) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) were identified as the most critical targets, and kaempferol showed effective binding activities with the above critical eight targets. Further, anti-COVID-19/PF co-occurrence effects of kaempferol were associated with the regulation of inflammation, oxidative stress, immunity, virus infection, cell growth process and metabolism. EGFR, interleukin 17 (IL-17), tumor necrosis factor (TNF), hypoxia inducible factor 1 (HIF-1), phosphoinositide 3-kinase/AKT serine/threonine kinase (PI3K/AKT) and Toll-like receptor signaling pathways were identified as the key anti-COVID-19/PF co-occurrence pathways. Conclusion: Kaempferol is a candidate treatment for COVID-19/PF co-occurrence. The underlying mechanisms may be related to the regulation of critical targets (EGFR, SRC, MAPK3, MAPK1, MAPK8, AKT1, RELA, PIK3CA and so on) and EGFR, IL-17, TNF, HIF-1, PI3K/AKT and Toll-like receptor signaling pathways. This study contributes to guiding development of new drugs for COVID-19 and PF comorbidities.

8.
J Clin Lab Anal ; 36(4): e24277, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35238419

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a lung cancer subtype with poor prognosis. We investigated the prognostic value of methylation- and homologous recombination deficiency (HRD)-associated gene signatures in LUAD. METHODS: Data on RNA sequencing, somatic mutations, and methylation were obtained from TCGA database. HRD scores were used to stratify patients with LUAD into high and low HRD groups and identify differentially mutated and expressed genes (DMEGs). Pearson correlation analysis between DMEGs and methylation yielded methylation-associated DMEGs. Cox regression analysis was used to construct a prognostic model, and the distribution of clinical features in the high- and low-risk groups was compared. RESULTS: Patients with different HRD scores showed different DNA mutation patterns. There were 272 differentially mutated genes and 6294 differentially expressed genes. Fifty-seven DMEGs were obtained; the top 10 upregulated genes were COL11A1, EXO1, ASPM, COL12A1, COL2A1, COL3A1, COL5A2, DIAPH3, CAD, and SLC25A13, while the top 10 downregulated genes were C7, ERN2, DLC1, SCN7A, SMARCA2, CARD11, LAMA2, ITIH5, FRY, and EPHB6. Forty-two DMEGs were negatively correlated with 259 methylation sites. Gene ontology and pathway enrichment analysis of the DMEGs revealed enrichment of loci involved in extracellular matrix-related remodeling and signaling. Six out of the 42 methylation-associated DMEGs were significantly associated with LUAD prognosis and included in the prognostic model. The model effectively stratified high- and low-risk patients, with the high-risk group having more patients with advanced stage disease. CONCLUSION: We developed a novel prognostic model for LUAD based on methylation and HRD. Methylation-associated DMEGs may function as biomarkers and therapeutic targets for LUAD. Further studies are needed to elucidate their roles in LUAD carcinogenesis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Metilação , Proteínas de Transporte da Membrana Mitocondrial , Prognóstico , Proteínas Serina-Treonina Quinases , Proteínas Secretadas Inibidoras de Proteinases , Proteínas Supressoras de Tumor/genética
9.
Front Immunol ; 12: 769011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069542

RESUMO

Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein-protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K-AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible "dangerous liaison" between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.


Assuntos
Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Antivirais/metabolismo , Asma/epidemiologia , Asma/metabolismo , COVID-19/epidemiologia , COVID-19/metabolismo , Fatores Imunológicos/metabolismo , Luteolina/metabolismo , SARS-CoV-2/metabolismo , Anti-Inflamatórios/química , Antioxidantes/química , Antivirais/química , Comorbidade , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Humanos , Fatores Imunológicos/química , Interleucina-6/metabolismo , Luteolina/química , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Albumina Sérica Humana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
BioData Min ; 13: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082858

RESUMO

BACKGROUND: Chinese medicine Xuebijing (XBJ) has proven to be effective in the treatment of mild coronavirus disease 2019 (COVID-19) cases. But the bioactive compounds and potential mechanisms of XBJ for COVID-19 prevention and treatment are unclear. This study aimed to examine the potential effector mechanisms of XBJ on COVID-19 based on network pharmacology. METHODS: We searched Chinese and international papers to obtain the active ingredients of XBJ. Then, we compiled COVID-19 disease targets from the GeneCards gene database and via literature searches. Next, we used the SwissTargetPrediction database to predict XBJ's effector targets and map them to the abovementioned COVID-19 disease targets in order to obtain potential therapeutic targets of XBJ. Cytoscape software version 3.7.0 was used to construct a "XBJ active-compound-potential-effector target" network and protein-protein interaction (PPI) network, and then to carry out network topology analysis of potential targets. We used the ClueGO and CluePedia plugins in Cytoscape to conduct gene ontology (GO) biological process (BP) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of XBJ's effector targets. We used AutoDock vina and PyMOL software for molecular docking. RESULTS: We obtained 144 potential COVID-19 effector targets of XBJ. Fourteen of these targets-glyceraldehyde 3-phosphate dehydrogenase (GAPDH), albumin (ALB), tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), Caspase-3 (CASP3), signal transducer and activator of transcription 3 (STAT3), MAPK8, prostaglandin-endoperoxide synthase 2 (PTGS2), JUN, interleukin-2 (IL-2), estrogen receptor 1 (ESR1), and MAPK14 had degree values > 40 and therefore could be considered key targets. They participated in extracellular signal-regulated kinase 1 and 2 (ERK1, ERK2) cascade, the T-cell receptor signaling pathway, activation of MAPK activity, cellular response to lipopolysaccharide, and other inflammation- and immune-related BPs. XBJ exerted its therapeutic effects through the renin-angiotensin system (RAS), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), MAPK, phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt)-vascular endothelial growth factor (VEGF), toll-like receptor (TLR), TNF, and inflammatory-mediator regulation of transient receptor potential (TRP) signaling pathways to ultimately construct a "drug-ingredient-target-pathway" effector network. The molecular docking results showed that the core 18 effective ingredients had a docking score of less than - 4.0 with those top 10 targets. CONCLUSION: The active ingredients of XBJ regulated different genes, acted on different pathways, and synergistically produced anti-inflammatory and immune-regulatory effects, which fully demonstrated the synergistic effects of different components on multiple targets and pathways. Our study demonstrated that key ingredients and their targets have potential binding activity, the existing studies on the pharmacological mechanisms of XBJ in the treatment of sepsis and severe pneumonia, could explain the effector mechanism of XBJ in COVID-19 treatment, and those provided a preliminary examination of the potential effector mechanism in this disease.

11.
Front Microbiol ; 9: 3325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728818

RESUMO

Ilex asprella is routinely used in China as a traditional medicinal herb to treat influenza (Flu). However, its specific antiviral activity and underlying molecular mechanism have not yet been determined. In this study, we sought to determine the antiviral activity and mechanism of Asprellcosides B, an active component extracted from Ilex asprella, and used against the influenza A virus cell culture. We also performed a computer-assisted structural modeling analysis and carried out surface plasmon resonance (SPR) experiments in the hope of determining the viral target of Asprellcosides B. Results from our studies show that Asprellcosides B reduced virus replication by up to 63% with an IC50 of about 9 µM. It also decreased the low pH-induced and virus-mediated hemolysis by 71% in vitro. Molecular docking simulation analysis suggested a possible binding of Asprellcosides B to the hemagglutinin (HA), which was confirmed by a surface plasmon resonance (SPR) assay. Altogether, our findings demonstrate that Asprellcosides B inhibits the influenza A virus, through a specific binding to the HA, resulting in the blockade of the HA-mediated membrane fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...